Category Archives: Gerard O’Neill

Four Goals

In chapter 3 of his book The High Frontier O’Neill formulates four general goals for us as humanity as a whole:

  1. There should be put an end to hunger and poverty for all humans;
  2. There should be found an optimal living climate for the entire world population;
  3. Without resorting to war, famine, dictatorial government or coercion, a birth control regime should be implemented;
  4. Individual liberty and freedom of choice for every single human being should be increased.

O’Neill, not surprisingly, argues that space colonization is the way to achieve these goals, or at least to contribute significantly to their achievement. Nevertheless these goals are likable, and most people will agree with them.

Time zones and separation of functions

One of the major advantages of space colonization by the use of free space habitats instead of planetary “space” colonies, is the separation of functions. Gerard O’Neill already advocated that residence, agriculture and heavy industry should be separated from each other, i.e. that agriculture and heavy industry should not be done in the same structure where most residences are located.

In regard of the separation of agriculture and residency, O’Neill gives two main arguments. First, in a space settlement we have full control over both climate and day length. However, the climate preferred by most citizens is not necessarily the most optimal climate for the cultivation of crops. Second reason is pest control. If in an isolated space farm a pest will occur, it will be easy to deal with it by sterilizing the farm by increasing temperature above the limit life cannot survive. It’s quite obvious that we cannot do this, in a space habitat populated by humans.

For the separation of heavy industry and residency, the arguments are even more straightforward. Heavy industry impose a great danger to health and safety through its pollution and potential of explosion and similar disasters. By banning heavy industries from space habitats, we create a clean and save environment for people to live.

A second argument put forward by O’Neill is related to his proposal to divide space settlements over three time zones, with a 8-hour difference between each successive zone. Because heavy industry is located outside any space habitat, they can be in continuous operation. And if the industry hires shifts from different time zones, night work which is considered as unpleasant by most, will be avoided.

O’Neill imagined that space settlers employed in heavy industry, would commute each day between their home and their workplace. But technology has improved much since the mid 1970s, that nowadays much work can be automated and where people are still needed teleoperation will allow workers to run factories without leaving their space habitats or even their homes.

Besides the desire the avoid night work, there’s another reason for dividing space settlements among different time zones (which surprisingly is not mentioned by O’Neill). The principal power source of space settlements will be solar power. And since there’s no night in space (in space settlements night has to be created by covering the windows), space based solar power plants will run continuously and hence have a continuous output. But the demand for power is not continuous over the day, causing surpluses at some moments and shortages at others.

If we divide the population of three time zones with an 8-hour difference, the power demand curve will be flattened. This because if one settlement is facing a power shortage at some point, it’s likely that another settlement has a surplus since their population is experiencing another phase of the day.

O’Neill Cylinders and spatial planning

This post was originally posted on blogspot.com on October 18, 2012

In an earlier post I discussed the potential of Bernal spheres and Stanford tori for city states, in this posting I will discuss several ideas for the spatial planning of O’Neill cylinders.

The ideas I will discuss here are not developed for space colonization as such, but can nevertheless be very inspiring for Space settlers. Especially for the larger space habitats spatial planning is an important topic. In this post I will discuss three proposals: O’Neill’s own idea, Ebenezer Howard’s garden cities and the ideas of Frank Lloyd Wright. The purpose of this post is not to force a certain spatial plan on to Space colonies, but rather to provide a framework for developing better societies.

Since O’Neill cylinders provide a large plot of usable land, they allows for more sophisticated spatial planning then smaller habitats. The latter will typically be highly populated and most of their usable land will be used for housing and closely related activities. Consequently the smaller habitats will lack any significant amount of nature (forests for example), while many, if not most, people will appreciate nature.

Since the days of O’Neill, the consensus among space colonization advocates (and we follow this) is that industry, agriculture and living should be separated (the first two should not be located inside space habitats), this is an important difference with terrestrial spatial planning. Combined with the practically unlimited resources in space, we are free to design the interior of an O’Neill cylinder as we like.

In his book, The high frontier, O’Neill has given an example of spatial planning. In chapter 5 he describes the build cities at the ends of each stroke of land, referred to as “valleys”, and using the land areas it self for villages, forests and parks.

It would be interesting to look at a few spatial planning concepts from the past. In the 1930s the American architect Frank Lloyd Wright  designed his famous Broadacre City. In this proposal “true” cities would disappear, while people would spread out over the country (for this reason his plan was not very popular outside the USA). One feature of this scheme was that each family receives a 4,000 square meter plot of land [1]. Which was to be developed according to wishes of the receiving family. While there many really good aspects to his vision, there is some important critique about the Broadacre City idea, which can be found here. A serious drawback of the original design is that it heavily depends on automobiles for transportation. In a space based nation, in which people are spread over many different space habitats, cars are really cumbersome to handle. As O’Neill explained the main modes of transportation in and between space habitats are space ships, maglevs, bicycles and walking [2].

My personal favorite is, however, the garden city, a concept developed by Ebenezer Howard around 1900. In short this urban design is an attempt to reconcile the city and the countryside. In Howard’s plan a garden city should require 6000 acres of land (which is approximately 25 square kilometers or 2428.2 hectare), of which 1000 acres are used for the actual city and the other 5000 acres are destined for agriculture [3]. As I have already said, most space habitat advocates favor a physical separation of agricultural and living areas. At first sight Howard’s idea seems to be outdated, and it is to some degree. Nevertheless I believe that this garden city concept is good starting point for our own spatial plans. We should look for alternative destination for these agricultural lands, a portion can be reserved for allotment gardens, while another portion is reserved for sport associations (think about field hockey clubs, rugby clubs and so on). In Howard’s original designs there is a remarkable lack of recreation areas (to be fair Howard planned a park in the center of his city, but this is one is to small for serious sport practice.)

The actual city itself, would be an annulus around this central park and would be divided into six wards, each with 5,000 inhabitants. This would give a total city population of 30,000 thousand, in addition a further 2,000 would live in the rural area of the city. Howard also thought about what to do when the city population would grow, unlike the natural course of urban growth by which new buildings are attached to the existing settlement, he foresaw to build new garden cities a few miles away of the old one. In fact he suggested to build a central city, a garden city with 55,000 inhabitants, first  and later to build six (normal) garden cities around it. The central city would serve as a regional center. This particular configuration is not feasible for a standard O’Neill Cylinder (diameter 6.4 km and length 32 km), but is we would increase these dimension s with a factor 5 (which would give an areal increase of a factor 25) then it would become an interesting option. However such O’Neill cylinders XL will not be realized in early space colonization.

A different but related concept is Columbia, Maryland. Like the conglomeration of garden cities, the different villages of Columbia are not one single area but separated by green areas (called the Tivoli garden). The city’s 100,000 residents [4] are spread among nine villages, with a land area of 82.7 square kilometers (compare this with a valley of 107.23 square kilometers). If we would organize a valley in a similar fashion as Columbia, than we would get a city with population of between 130,000 and 143,000 [5]. In order to keep this city mostly car-free, they designers envisioned a minibus-network.

As I have said at the beginning of this post, the purpose of the mentioned examples is to inspire the spatial planners of O’Neill cylinders. And I hope they will not make the same mistakes as those made by terrestrial urban planners. Space colonization is a nice occasion to experiment with innovation on spatial planning. Of course the specific spatial plans will depend on the political choices made by the owners/governments of space habitats, different political ideologies require different spatial plans. The examples I selected here, reflect my personal believes about decentralized republicanism with its preference for small non-urban communities as the framework for active citizens participation in public affairs.

Notes

[1] A valley of a typical O’Neill cylinder is 3.35 by 32 kilometers, which is 107.2 million square meters. And using Wrights 4,000 square meters per family, we can calculate that a valley provides land for 26,800 families.

[2] I will discuss transportation in space colonies more deeply in another post.

[3] Using the standard dimensions of a O’Neill Cylinder (length 32 km, diameter 6.4 km), we can calculate that each valley can host 4.4 garden cities. This gives a total population of 141,000 people for each valley (4.4×32,000).

[4] Originally (in 1966) it was estimated that Columbia would have 110,000 residents in 1980.

[5] The lower estimate is based on Columbia’s current population, the higher one the estimate from note [4].