Tag Archives: politics

On the language of a space colony

This post was originally posted on blogspot.com on June 13, 2012

In this post I will discuss the very important question of which language a space colony should have? I will argue that a constructed language would be our best choice, but I will first explain why this question is as important as I claim. Sequentially I will sketch the problems of selecting a natural language for a space colony and finally I will explain how these problems are solved by selecting a constructed language.

The first point we have to consider is  why we should agree on a common language. There are a lot of countries which do well without an official language, for instance the USA and the Netherlands. But these countries have de facto a national language, in a traditional homogeneous society newcomers have to learn that society’s language in order to be fully functional. So countries with a historical common language don’t need to formalize this.

A common language in a society, which is widely understood by its members, enables useful communication within it, think for example about the law. People has to be able to know the law and as matter of fact, the law has to be written in some language. It’s true that some multilingual countries write their laws in multiple languages, but most of these countries are bilingual, so the costs of translating laws and other official documents are quite modest. If the number of recognized languages increases, then also the associated costs will increase. The most clear example of this is the European Union, which has no less than 23 official working languages and as a result a large part of the budget of the EU goes up to translating (for instance the instant interpreting in the European Parliament).

It’s clear that Space colonists would want to avoid this absurdity, we have better use for our money (lower taxes would be for example a nice idea for attracting new immigrants), so they should rationally choose for one single language (important to note is that this will not mean that other languages are not allowed). So the next question is which language to pick?

For the sake of the argument I will assume that the official language of a single Space colony will be decided by democratic procedures, like a referendum (a practical consequence of this will be, of course, that several colonies will each pick another language). It would be a nice exercise to see whether this could lead to a situation in which a Space colony should decide to become deliberately a multilingual society and if so under what circumstance, and therefore contradicting my “theorem of unilingualism“. My hunch will be that it depends on the specific decision procedure, but I don’t think it will be appropriate to discuss this question here, so for those who are interested I will place this discussion in a comment of this post.

This will bring me to my main argument. At this moment, there some 7000 natural languages in the world, most of them are rather small. Although mandarin Chinese has more speakers, English is more widely spread (this is the main reason why this entire blog is in English) and has also more non-native speakers. This combined with the fact that a large part of the Space advocacy movement is located in the English-speaking world, has led by some to assume that English would therefore the logical choice for Space colonies.

Well, I have to disagree. English, like all other natural languages, is associated with a specific culture, in this case the Anglo-Saxon culture of Britain, North America and Oceania. So by choosing for English as official language, a Space colony is willingly choosing for the Anglo-Saxon culture, at least in the eyes of outsiders. It is my personal conviction that Space colonies should develop their very own cultures, which are clear distinct from any terrestrial “culture”. And the most important tool to realize this is by selecting a language which is not related to any other culture. As a corollary of this, I also believe that different Space communities will distinguish of each other by choosing different languages.

An other problem of choosing English, the same applies for every other natural language, is that it will discriminate against non-native speakers. Those who are native speakers are in an advantageous position in comparison of those who are not. Since I believe that Space colonies will not be established by cultural homogeneous groups, I consider this as unnecessarily unfair. In order to avoid the creation of unjust advantages for native speakers, we should choose for an artificial or constructed language. Since no colonist will be a native speaker of this language, all colonist will be equal in this respect.

Over the course of history, there have been many proposals for so-called auxiliary languages, with Esperanto as its most famous example. Because of its popularity, I will strongly advice against the selection of Esperanto as an official language of a Space colony, since in the last 120 years the Esperanto culture has developed its own distinct culture. I believe that the association of the Space colonization movement with the Esperanto movement, will be bad for both movements. But nevertheless those who are in charge of designing languages for Space colonies, can learn much from Esperanto and related projects like Ido or Interlingua.

Although it is not the purpose of this essay to provide guidelines for creating a language,  it would advisable that Spacer languages should be based on the principles of international auxiliary languages. This because the type of constructed languages is aimed at easiness to learn, and since the population of (early) Space colonies is likely to be multicultural.

Note

As I have promised, I will discuss here the question of multilingual Space colonies. First I have to note, that since most early space colonies will be multicultural, their citizens will speak many different languages in private relations, that is not where I am talking about, instead I will concentrate only on official languages.

Although it would be the rational choice to select one and only one official language, I believe there will be Space colonies which will be multilingual. Mostly as part of a comprise between different groups. Suppose that the citizens of the colony Bernal Alpha have to vote on an official language and have three choices: Esperanto, Interlingua and Novial. Let the result of this vote be as follows: 45% for Esperanto, 45% for Interlingua and 10% for Novial. Then there are two possible solutions: 1. a second vote between Esperanto and Interlingua, or 2. making both Esperanto and Interlingua official languages.

It will depend on the specific circumstances whether which option will be selected. How strongly are the voters “attached” to “their own” language?

Manifesto part 7

Funding

The important question is how are we going to fund our plans. The cornerstones of our funding plan are crowd funding and incrementalism. The introduction of internet and online banking, has made crowd funding possible. The idea is that the members of the public will make a small donation to fund projects they like. Several artistic projects, games and even companies are successfully financed through crowd funding. There are actually two kinds of crowd funding, donation and loans. In the latter case the money has to be repaid with interest, in both cases a large sum of money can be raised by a large crowd willing to donate/invest a small amount of money.

Incrementalism is that we start small. First we want to collect around €100,000 in donations from the public, with this money we want to buy/lease a piece of land in Northern Chile. Subsequently we want to lend up to a million Euros for building our spaceport. In the next phase we will offer our launch facilities to customers in order to generate revenue for both paying interest and reinvesting. When we can run our launch base profitably or at least almost profitably, we can ask for a second and larger loan (through crowdsourcing) for our first NEO mission. Once we can return a sample containing some precious metals, the age of Space Colonies is finally arrived.

The third principle of our funding policy is that we do not accept government funding or large private donations. Since we want to create a new independent republic in Outer Space, we prefer ten thousand donations of €100 to one donation of €1,000,000. Once we allow government sponsoring, we are at risk of becoming a colony of an existing state. Also we do not want to allow that wealthy people or corporations can buy into our movement, with the result that our “republic” only serves the purposes of our “donors”. This, however, does not mean that we will never cooperate with governments or corporations, but only if we believe such an action would be beneficial for our cause.

Manifesto part 1

Reasons for Space colonization

In this section we will explain why we are in favour of space colonization, and the next section we will also explain why we want to colonize the so-called fourth and fifth Lagrange points of the Earth-Sun system rather than colonizing the Moon or Mars. Although many of our arguments are not original, actually most of our main arguments exist since at least the late 1960s, we will present our reasoning from a point of view which is based on classical republicanism and classical liberalism.

Traditional arguments for space colonization are overpopulation and the survival of humanity. Since the world population continues to grow, some people fear that at one time in the (near) future there are too many people. Overpopulation is the situation that there are more people on Earth than our planet can sustain (this is the idea behind the ecological footprint). Believing that birth control programs will not work or will be insufficient, some people believe that therefore a part of our species should be relocated to other planets or to artificial space habitats. The fear for uncontrollable population growth was especially great in the 1970s (see for instance the establishment of the club of Rome). Since then the growth rate of the world population has declined, and many experts now believe that the number of humans will stabilize at nine to ten billion by the year 2100. Of course we cannot predict whether there will be a baby boom somewhere in this century, but it is unlikely that the world population will triple during the next 100 years.

There are several so-called existential risks for humanity, varying from natural to man-made catastrophes. The idea is that in order to guarantee the continued existence of the human race, a part (or even all) of humanity should be relocated into outer space, in the event of a global catastrophe. However some of those potential catastrophes, especially those created by man, can either be averted or their consequences can be reduced. Other potential risks are only a problem in billions of years, which raises the question why we should take action right now, while there are more urgent problems (like the HIV/aids pandemic). Some people, like for instance the Voluntary Human Extinction Movement, would argue that humans shouldn’t reproduce in the first place, and therefore such far-into-the-future problems, such like the Sun entering into the red giant stage, are irrelevant. Given that the chance for a global catastrophe which is able to wipe out the human species, to happen within the lifespans of all currently alive people is rather small, we can ask whether we have a moral responsibility to ensure the continued existence of mankind. Different people will answer this question differently.

Traditionally there is also a third reason for space colonization. Although this one is not as popular as the first two, but we believe this third argument is possibly more important. We could call this one the economic argument (we could call the first and second argument the demographic respectively the survivalist argument). As more people are the joining the global middle classes, more people will buy cars, washing machines and other consumer goods. In order to meet this increasing demand, more and more resources are needed. If for example every person on Earth would be able to buy a car, we should switch to, for example, hydrogen cars. But the required fuel cells need a lot of platinum, and everyone knows that platinum is a very rare resource, at least here on Earth. Asteroid mining could easily provide enough platinum for a full-scale hydrogen economy (I will ignore all criticism of the hydrogen economy here, because that is outside the scope of this manifesto). Beside solving issues of resource depletion, asteroid mining can also reduce or eliminate environmental damage caused by terrestrial mining. The reader may point out that asteroid mining is not the same as space colonization. This is true, but asteroid mining without space colonization is practically impossible. Even if we have a nearly completely automated space mining industry, we still need a (small) space based crew in case of some unexpected problems.

However, we believe that the most important reason for space colonization is what we would call the political or utopian argument. Here on Earth civil liberties are under pressure almost everywhere, and since many resources (e.g. food and oil) are increasingly becoming scarce we expect that political freedoms will be even further restrained. Except for a piece of Antarctica known as Marie Byrd Land, almost all land on Earth is claimed by governments. Therefore it is almost impossible to create a new country on Earth without war. Secondly it is hard to impossible to implement large reforms in existing societies, see for example the massive demonstration currently held in many European countries.

Republic of Lagrangia believes that every society, whether on Earth or in Outer Space, should have the right to organize themselves as they see fit. We also believe that every person should have the right to choose in which society he or she wants to live. Therefore we do not believe in forcing existing terrestrial societies to implement the reforms we wish to implement, our only option is to move to Outer Space.

We realise that different people want to live in different kinds of societies, but the beautiful aspect of Space Colonization is that it provide both the space and the resources for a wide variety of societies. Suppose that one group disagrees how some Space community is run, they can simply take their stuff and go to somewhere else to create their own community. No need for violent separation movements and related civil wars.

Peaceful coexistence will be the cornerstone of the relation between Space Nations, people will move to those societies they like most or they will try to create their very own. This kind of freedom does not exist on Earth nowadays.

O’Neill Cylinders and spatial planning

This post was originally posted on blogspot.com on October 18, 2012

In an earlier post I discussed the potential of Bernal spheres and Stanford tori for city states, in this posting I will discuss several ideas for the spatial planning of O’Neill cylinders.

The ideas I will discuss here are not developed for space colonization as such, but can nevertheless be very inspiring for Space settlers. Especially for the larger space habitats spatial planning is an important topic. In this post I will discuss three proposals: O’Neill’s own idea, Ebenezer Howard’s garden cities and the ideas of Frank Lloyd Wright. The purpose of this post is not to force a certain spatial plan on to Space colonies, but rather to provide a framework for developing better societies.

Since O’Neill cylinders provide a large plot of usable land, they allows for more sophisticated spatial planning then smaller habitats. The latter will typically be highly populated and most of their usable land will be used for housing and closely related activities. Consequently the smaller habitats will lack any significant amount of nature (forests for example), while many, if not most, people will appreciate nature.

Since the days of O’Neill, the consensus among space colonization advocates (and we follow this) is that industry, agriculture and living should be separated (the first two should not be located inside space habitats), this is an important difference with terrestrial spatial planning. Combined with the practically unlimited resources in space, we are free to design the interior of an O’Neill cylinder as we like.

In his book, The high frontier, O’Neill has given an example of spatial planning. In chapter 5 he describes the build cities at the ends of each stroke of land, referred to as “valleys”, and using the land areas it self for villages, forests and parks.

It would be interesting to look at a few spatial planning concepts from the past. In the 1930s the American architect Frank Lloyd Wright  designed his famous Broadacre City. In this proposal “true” cities would disappear, while people would spread out over the country (for this reason his plan was not very popular outside the USA). One feature of this scheme was that each family receives a 4,000 square meter plot of land [1]. Which was to be developed according to wishes of the receiving family. While there many really good aspects to his vision, there is some important critique about the Broadacre City idea, which can be found here. A serious drawback of the original design is that it heavily depends on automobiles for transportation. In a space based nation, in which people are spread over many different space habitats, cars are really cumbersome to handle. As O’Neill explained the main modes of transportation in and between space habitats are space ships, maglevs, bicycles and walking [2].

My personal favorite is, however, the garden city, a concept developed by Ebenezer Howard around 1900. In short this urban design is an attempt to reconcile the city and the countryside. In Howard’s plan a garden city should require 6000 acres of land (which is approximately 25 square kilometers or 2428.2 hectare), of which 1000 acres are used for the actual city and the other 5000 acres are destined for agriculture [3]. As I have already said, most space habitat advocates favor a physical separation of agricultural and living areas. At first sight Howard’s idea seems to be outdated, and it is to some degree. Nevertheless I believe that this garden city concept is good starting point for our own spatial plans. We should look for alternative destination for these agricultural lands, a portion can be reserved for allotment gardens, while another portion is reserved for sport associations (think about field hockey clubs, rugby clubs and so on). In Howard’s original designs there is a remarkable lack of recreation areas (to be fair Howard planned a park in the center of his city, but this is one is to small for serious sport practice.)

The actual city itself, would be an annulus around this central park and would be divided into six wards, each with 5,000 inhabitants. This would give a total city population of 30,000 thousand, in addition a further 2,000 would live in the rural area of the city. Howard also thought about what to do when the city population would grow, unlike the natural course of urban growth by which new buildings are attached to the existing settlement, he foresaw to build new garden cities a few miles away of the old one. In fact he suggested to build a central city, a garden city with 55,000 inhabitants, first  and later to build six (normal) garden cities around it. The central city would serve as a regional center. This particular configuration is not feasible for a standard O’Neill Cylinder (diameter 6.4 km and length 32 km), but is we would increase these dimension s with a factor 5 (which would give an areal increase of a factor 25) then it would become an interesting option. However such O’Neill cylinders XL will not be realized in early space colonization.

A different but related concept is Columbia, Maryland. Like the conglomeration of garden cities, the different villages of Columbia are not one single area but separated by green areas (called the Tivoli garden). The city’s 100,000 residents [4] are spread among nine villages, with a land area of 82.7 square kilometers (compare this with a valley of 107.23 square kilometers). If we would organize a valley in a similar fashion as Columbia, than we would get a city with population of between 130,000 and 143,000 [5]. In order to keep this city mostly car-free, they designers envisioned a minibus-network.

As I have said at the beginning of this post, the purpose of the mentioned examples is to inspire the spatial planners of O’Neill cylinders. And I hope they will not make the same mistakes as those made by terrestrial urban planners. Space colonization is a nice occasion to experiment with innovation on spatial planning. Of course the specific spatial plans will depend on the political choices made by the owners/governments of space habitats, different political ideologies require different spatial plans. The examples I selected here, reflect my personal believes about decentralized republicanism with its preference for small non-urban communities as the framework for active citizens participation in public affairs.

Notes

[1] A valley of a typical O’Neill cylinder is 3.35 by 32 kilometers, which is 107.2 million square meters. And using Wrights 4,000 square meters per family, we can calculate that a valley provides land for 26,800 families.

[2] I will discuss transportation in space colonies more deeply in another post.

[3] Using the standard dimensions of a O’Neill Cylinder (length 32 km, diameter 6.4 km), we can calculate that each valley can host 4.4 garden cities. This gives a total population of 141,000 people for each valley (4.4×32,000).

[4] Originally (in 1966) it was estimated that Columbia would have 110,000 residents in 1980.

[5] The lower estimate is based on Columbia’s current population, the higher one the estimate from note [4].

Bernal Spheres, Stanford tori and the return of the polis.

This post was originally published on blogspot.com on April 23, 2012; updated June 13, 2014.

In this post I want to share some thoughts I have had for many years, concerning the ancient Greek city-state, or polis (plural poleis) and what we can learn from them.

Both O’Neill’s Island I and its main competitor the so-called Stanford torus are designed for some ten thousands of inhabitants, roughly the population of many small cities. And since space habitants of this kind can easily moved to any place within our (inner) Solar system, they can enjoy a great amount of isolation just by keeping distance from other space colonies. Furthermore the abundance of space resources makes economic self-sufficiency not only feasible but also very likely.

Here on Earth no country can turn to a policy of full autarky without paying a huge price. Effectively only very primitive societies can be autarkic without giving up current wealth. One reason of modern globalization is that highly technological industries require large amounts of various resources, of which many are both rare and spread over different parts of the world. Some resources are as good as exclusively found at one place on Earth. Some argue that this interdependence promotes world peace, while on the other hand  we see that competition of scarce resources actually lead to many international conflicts.

In space there is a different situation, since there are a lot of recourse rich asteroids. Actually some “small” asteroids contains a few times more resources than anything ever dug up by Mankind, not only these asteroids have a huge abundance of resources but they also contain virtually all chemical elements needed by highly industrialized societies. A second difference is that competition among space colonies for resources will be low, due to great amount of asteroids, reducing tension among Spacer societies.

We can easily imagine that a small space colony, type Bernal sphere or Stanford torus is located near a small asteroid (dimension less than 1km). Such space society will be economically and politically independent from any other state (whether Spacer or terrestrial). This comes very close to the ancient Greek ideal of the polis: a political independent community of a few thousand people and economically self-sufficient.

Since the time of the ancient Greeks the ideal of small independent communities have repeatedly promoted by political activists. But these ideas and initiatives are repeatedly defeated in favour of the nation-state. A modern incarnation of this attitude is Communalism as conceived by Murray Bookchin. Bookchin, who stood in the anarchist tradition, opposed the nation-state, because it is undemocratic and a tool for corporate interest. Instead he argued that people should organize direct democracy at municipal level. And in a next stage, such municipalities should organize themselves into confederations, these confederations should compete with the Nation State for power. Confederations of municipalities differ from nations in an important way: the municipality is the primary political unit and the municipal citizens’ assembly is the Sovereign; the confederation is just an organization for cooperation and joint action by municipalities, and the representatives of the municipalities in the confederal council are purely coordinating and administrative.

Personally I believe that Communalism and its aims are not realistic, on Earth, because nation states are too well-organized and most terrestrial people don’t care about politics in general, and specially they don’t care about the Nation State. I suppose that most readers of this blog have never heard about Communalism before. On Earth I see no future for Communalism and related ideologies, but in Space Communalism and its idea may play a major role. Although I am not a Communalist myself (mainly because I disagree with its anti-capitalist nature), I believe that Communalism can provide valuable insights on how to organize Space colonies.

Some Space colonies may opt for Communalism, while other colonies will try other forms of government. But I believe there is a future for small polis based political communities in Space.

Inside view of a Bernal sphere

Interior including human powered airplane

 

 

Outside view of a Bernal sphere

Bernal Spheres - exterior

 

Review of “Statehood in Space” by Phillip Bosshardt

This post was originally posted on blogspot.com at September 11, 2012

Introduction

On the site of the National Space Society I found the following article of interest. In this posting I will provide some critical comments. The article is about statehood in space, which is our ultimate aim. Since the article is composed of five parts, I will present my comments for each part separately. Continue reading Review of “Statehood in Space” by Phillip Bosshardt