Tag Archives: Venus


For those who do not believe in hell, I have bad news: you are dead wrong. At any given moment this place is located between 41 million and 258 million kilometres away from Earth. Temperature over there is 462 degrees Celsius and its atmosphere is filled with acid. We call this place Venus.

At first sight Venus does not seem to be an interesting place for space colonists. In this post I will discuss the value of the second planet for future space colonization.

One of the most remarkable features of our twin-sister planet, is her thick atmosphere, (yes, this deserves her very own Wikipedia lemma). Her atmosphere’s main component is carbon dioxide (96.5%), followed by nitrogen (3.5%) and traces of other compounds.  One of these other compounds is sulphuric acid. This mineral acid is very corrosive, but nevertheless it is used in many important industrial processes. Hence the mining of sulphuric acid is quite interesting for space settlers.

Mining sulphuric acid from the atmosphere of Venus is in many aspects quite similar to mining helium 3 from the outer planets. So Venus might be used as a training ground for helium mining on, say, Uranus. Technologies developed for this economic activity can be used in the Outer Solar System, with modest adaptations.

But also Venus’s large nitrogen reserves are quite interesting. Nitrogen is essential for terrestrial life, and it’s one of the basic ingredients of fertilizers. Through the Baber-Bosch process ammonia is produced from nitrogen and hydrogen. And ammonia has, besides the production of fertilizers, many industrial applications.

And what to think of the enormous amount of carbon dioxide on Venus? Carbon dioxide can directly be used for growing crops, which utilize photosynthesis to convert water and carbon dioxide into biomass and oxygen. But these carbon dioxide reserves could also be used to produce graphene and synthetic diamonds. These substances have interesting properties for use in electronics.

In order to produce either graphene or diamonds, one has to reduce carbon dioxide to pure carbon. One way to do this is the Bosch reaction. In this process we let carbon dioxide react with hydrogen gas, the end product is carbon and water. Hydrogen gas has to be imported from outside Venus, but the water can be dumped on Venus itself, since there’s more than enough water in outer space.

At 50 km above the surface of Venus both temperature and atmospheric pressure are similar to those at Earth at sea level. But since carbon dioxide is has higher density than breathable air, the latter would be a lifting gas at Venus. A balloon, also known as aerostats, filled with air would float in the atmosphere of Venus. We can use such aerostats as a platform for our mining operations, and even as the site for processing the collected gases.

Though Venus herself is not suitable for colonization, her atmosphere is full of valuable resources for space settlements and their inhabitants. The greatest challenge to any mining activity in the atmosphere of Venus, is her relatively high escape velocity, which is slightly less than Earth’s.